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Abstract. The behavior of the bulk two-point correlation function G(r;T |d) in d-dimensional system with
van der Waals type interactions is investigated and its consequences on the finite-size scaling properties
of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-
spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to
decay at large distances r as r−(d+σ), with 2 < d < 4, 2 < σ < 4 and d+ σ ≤ 6. It is shown that G(r; T |d)
decays as r−(d−2) for 1 � r � ξ, exponentially for ξ � r � r∗, where r∗ = (σ − 2)ξ ln ξ, and again in a
power law as r−(d+σ) for r � r∗. The analytical form of the leading-order scaling function of G(r;T |d) in
any of these regimes is derived.

PACS. 64.60.-i General studies of phase transitions – 64.60.Fr Equilibrium properties near critical points,
critical exponents – 75.40.-s Critical-point effects, specific heats, short-range order

1 Introduction

It is well known that the critical properties of a given
statistical-mechanical system depend only on a small num-
ber of parameters like the dimensionality d of the system,
the symmetry of the order parameter characterizing the
corresponding phase transition, and on general properties
of the interaction coupling the order parameter at differ-
ent locations. For example, in an isotropic O(n) system
one expects that all critical exponents and scaling func-
tion of a given physical quantity are independent on, say,
lattice structure, or on short-range details of the inter-
action. Let us, for definiteness of notation, speak about
Ising-like systems (i.e. n = 1) with Hamiltonian

H = −1
2

∑
r6=r′

J(r− r′)SrSr′ . (1.1)

In the context of the critical phenomena the usual criterion
for a given interaction to be considered as short-ranged is
finite second moment of J(r), i.e. in terms of the Fourier
transform J̃(k) of this interaction for small k = |k| one
has

J̃(k) = J̃0 + J̃2k
2 +∆J̃(k), (1.2)

where ∆J̃(k) is asymptotically smaller than k2. Then, if
2 < d < 4, for the bulk two-point correlation function

G(r;T |d) =: 〈SrS0〉 − 〈S0〉2 (1.3)
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one normally writes

G(r;T |d) = Dr−(d−2+η)X±(r/ξ), (1.4)

where X± are two universal scaling functions (for T > Tc

and T < Tc, respectively), D = D(T ) is a nonuniversal,
slowly varying function of temperature that well can be
approximated by a constant in the vicinity of the critical
point T = Tc and ξ is the bulk correlation length, i.e.
ξ(T ) ' ξ+

0 t
−ν , t → 0+ with t = (T − Tc)/Tc. For T ≥ Tc

one has

X+(x) '

 X̂+x(d−3)/2+η exp(−x), x→∞

const., x→ 0.
(1.5)

The above is, in fact, the classical result of Fisher [1] for
the two-point correlation function in the critical region
of a simple fluid. Note, that when r � ξ the correla-
tions decay exponentially fast with the distance r. It is
well known that in simple nonpolar fluids the interactions
are characterized by potentials that decay as inverse pow-
ers of the distance at large r. In d = 3 the most promi-
nent case is the induced dipole-induced dipole (or van der
Waals) interaction for which (neglecting the retardation
effects) the potential decays as Φ(r) := −J(r) = −A/r6,
where A > 0 is a positive constant. One easily can check
that this interaction has a Fourier transform which is in-
deed of the type given in equation (1.2). But for such
systems (d-dimensional Ising model), in which the in-
teractions decrease in inverse power with respect to the
distance between the interacting objects, i.e. as r−(d+σ),
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σ > 2, the following rigorous result due to Iagolnitzer and
Souillard [2] is available.

Theorem [2]: The two-point correlation function
G(r;T,H|d) of a ferromagnetic system in the presence of
an external magnetic field H does not decay faster than
its potential J . For any T <∞ and any real H there exists
a strictly positive constant C(T,H), such, that

G(r;T,H|d) > C(T,H)J(r). (1.6)

For H = 0 the theorem is valid for T > Tc and for
any of the two “pure” phases (the “plus” and the “minus”
ones) for T < Tc.

The immediate consequence of this theorem is that if
T 6= Tc (1.4–1.5) could not be true for r large enough in-
dependently on how close T is to the critical point. The
only way to reconcile (1.4–1.5) with the above theorem is
to realise that if T 6= Tc (1.4–1.5) could be valid only up
to some r = r∗(T ). Then for 1 � r � ξ the correlations
will decay as r−(d−2+η), for ξ � r � r∗ they will fall
off exponentially, but, for r > r∗ they should again de-
cay in a power law as a function of the distance, namely
as r−(d+σ). In other words one should observe a crossover
from power law to exponential and then, again, to power
law behavior of the correlations. Saying this one imme-
diately stacks with at least two important questions that
appear naturally: 1) What is the value of r∗, i.e. where
this crossover happens and 2) What are the properties of
the function describing that crossover. One of the aims
of the current article is to answer those questions in the
framework of an exactly solvable model.

It is easy to check that one has the above situation
only with interactions of the type J(r) ' A/rd+σ, where
σ > 2. To avoid misunderstanding in the remainder of the
text let us make the following definitions. i) An interac-
tion will be called of short range if for any finite m its
mth moment is finite, i.e.

∑
r r
mJ(r) < ∞. ii) An inter-

action is long ranged if there exists a finite m such that
the corresponding mth moment diverges. If m = 2 this is
a leading-order long range interaction, and if m > 2 this is
a subleading (van der Waals type) long-range interaction.

We recall that even if the interaction is short-ranged
in the above sense (this is the situation we have with
nearest neighbour, next-nearest neighbour, etc. interac-
tions, i.e. with interactions that are essentially of a finite
range), then (1.4–1.5) are again valid only for 1 � r �
r∗sr. The exact results for d = 2 Ising model (see, e.g.
McCoy and Wu [3]) and the mean-field results of Fisher
and Burford [4] suggest that, if T 6= Tc, r∗sr ∼ ξ2. (The
exact calculations due to Chen and Dohm [5] for the
spherical model give a bit more “generous” estimation
for r∗sr, namely r∗sr ∼ ξ3, see also below.) For r � r∗sr
the interactions decay, of course, again exponentially, but
they contain a nouniversal prefactor [5], i.e. their leading-
order behavior is then nonuniversal. If the interaction is
of a leading long-range type then (1.4) is also valid but
in the limit r/ξ � 1 one has to require that X+(x) '
X̂+xη−2−σ = X̂+x−2σ, where we have taken into account
that η = 2− σ if σ < 2 [6–8]. The corrections to the large
distance correlations in this case are in a power-law of r,

which means that their leading order behavior is universal
for any r � 1. This asymptotic is confirmed by the exact
results for the spherical model due to Joyce [9,10] and it is
in tune with the above theorem for the Ising model. Note
that for r large enough the correlations always fall off in
a power law with the distance with the only exception
of interactions of a fully finite range when they do decay
exponentially.

That (1.4–1.5) should be modified for the case of sub-
leading long-range interactions has been noticed by several
authors.

First Widom proposed [11] that for r →∞

G(r;T |d) ' βJ(r) + a1r
−(d−1)/2 exp(−r/a2), (1.7)

where β = 1/(kBT ), kB being the Boltzmann’s constant,
and a1 and a2 are “depending only on the thermodynamics
state constants”. It is clear that in nowadays formulations
the above means to take for the correlation function a sum
of βJ(r) and the right-hand side of equation (1.4). Later
the problem has been attacked by Enderby, Gaskell and
March [12]. They consider a three-dimensional fluid, i.e.
the case d = σ = 3. Supposing the Ornstein-Zernike inte-
gral equation to be valid and taking the direct correlation
function to be c(r) = βJ(r), they obtain, after assuming
that the structure factor S has a Fourier transform of the
type S(k) = χ/β + c2k

2 + c3k
3 + · · · , that G(r;T |3) '

J(r)χ2/β = Aχ2/(βr6), when r →∞ and in temperature
regions “well away” from the critical point [13]. Starting
from this result, Kayser and Raveché [14] suggest that
G(r;T |d) can be decomposed in two additive contributions
Gsr and Glr, where Gsr is given by (1.4), plus higher-order
terms that account for the usual corrections to scaling,
and Glr = Θ(r − r∗)J(r)χ2/β. Here Θ(x) is the Heavi-
side step function and r∗ is to be determined by the re-
quirement that at this point Gsr = Glr. Taking χ ∝ ξ2−η

in the expression for Glr, which in fact means supposing
G(r;T |d) ' J(r)χ2/β, r → ∞, to be valid for general d
and also for temperatures close to Tc, the above authors
derived

r∗ = (σ − 2 + η)ξ ln ξ. (1.8)

In [15] Flöter and Dietrich make similar statements for
r∗ [16] for the case d = σ = 3.

In the present article we will investigate the large r
behavior of the correlations and will derive the explicit
form of Glr within the mean spherical model. The interac-
tion will be supposed to be of the type J = A/rd+σ, with
2 < d < 4, 2 < σ < 4 and d+ σ ≤ 6.

If one knows G one can immediately determine the be-
havior of the bulk susceptibility χ by using the fluctuation-
dissipation relationship χ(T |d) = β

∑
rG(r;T |d). Defi-

nitely, if the finite-size two-point correlation function is
known for a given finite system with a characteristic size
L, then one can determine in this way also the behavior
of the finite-size susceptibility χ(T ;L|d). In a recent arti-
cle [5] Chen and Dohm have addressed the question: could
one say what should be the scaling structure of the finite-
size susceptibility under periodic boundary conditions if
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one knows only the bulk two-point correlation function?
They suggest a hypothesis, that this is possible by inter-
preting in a proper way the functional dependence of G
on r as a dependence of χ(T ;L|d) on L. In the present ar-
ticle we check the relationship that they suggest between
G and χ(T ;L|d) on the example of our exactly solvable
model. For that aim we will use the results for χ(T ;L|d)
derived in [17] for the same model.

The structure of the article is as follows. In Section 2
we briefly describe the model and present our starting an-
alytical expressions. Section 3 contains our results for the
large r behavior of the two-point correlation function G.
In Appendix A we present some details of the calculations
needed to determine the asymptotics of G as a function of
r and ξ. Section 4 comments on the relationship between
the derived results for G and the behavior of the finite-
size susceptibility of systems with subleading long-range
interactions. The article closes with a discussion (Sect. 5)
where we speculate about the possible extensions of our
results for other models.

2 The model

We consider a d-dimensional mean spherical model [18,19]
(for a comprehensive review on the results available for
this model see [20]). The degrees of freedom consist of a
set of N localised spins with Gaussian weight, and the
Hamiltonian is given by equation (1.1). The interaction
J(r) is supposed to be of van der Waals type, i.e. its
Fourier transform is supposed to be of the form

J̃(k) ' J̃(0)
(
1− v2k

2 + vσk
σ − v4k

4 +O(k6)
)
, (2.1)

where k = |k|, 4 > σ > 2 and J̃(0), v2, vσ and v4 are
nonuniversal positive constants. Note that the signs of the
coefficients in the small k expansion of the Fourier trans-
form of the interaction are chosen so as they normally
appear for subleading long-range interactions that decay
in power law with the distance between the interacting
objects-molecules or spins. In (2.1) J̃(0), v2, vσ and v4

are σ-dependent – for simplicity of notation this depen-
dence is omitted here. The term vσq

σ in (2.1) is associated
with a contribution to the real-space interaction going as
r−d−σ. Furthermore, we suppose that J̃(k) − J̃(0) < 0 if
k 6= 0, which reflects the fact that there are no competing
interactions in the system and that the only ground state
is the ferromagnetic one. Of course, it would be interest-
ing to consider such systems – say with a combination
between antiferromagnetic short range and ferromagnetic
subleading long-range interactions, but this is out of the
scope of the current article.

The partition function of the model is given by the
multiple integral∫ ∞

−∞
ds1 · · ·

∫ ∞
−∞

dsN exp [−βH] , (2.2)

supplemented by the mean spherical condition
N∑
i=1

〈s2
i 〉 = N, (2.3)

which can be enforced with the use of a “Lagrange
multiplier” term going as λ

∑N
i=1 s

2
i into the effective

Hamiltonian, and thence into the partition function. The
spherical model equation of state then takes the form∑

k

kBT

λ− J̃(0)(1− v2k2 + vσkσ − v4k4)
= N. (2.4)

The phase transition in this model occurs when the com-
bination λ − J̃ takes on a value asymptotically close to
zero. The difference between the equation of state in (2.4)
and the standard mean spherical model condition in short
range systems lies in the addition of the term going as kσ
in the denominator on the left hand side of (2.4). In gen-
eral, this term is taken to be negligible, but we will soon
see that it leads to interesting effects.

For the model defined in the above way it can be
shown, following [10], that the bulk correlation function
G(r;K|d, σ) is given by, if 2 < d < 4,

G(r;K|d, σ) =
1
K

1
(2π)d

∫
Rd

eik.rdk
ξ−2 + k2 − bkσ + ck4

,

(2.5)

whereK = βv2J̃(0), and b = vσ/v2 > 0 and c = v4/v2 > 0
are nonuniversal constants. Let us note that the values
of b and c are such, that there are no real roots of the
equation 1 − bkσ−2 + ck2 = 0. The last follows from the
propositions we made for J̃(k). Note also that in (2.5) we
have taken the cut-off in the k-space to be infinity (for a
lattice system it will mean that one considers the limit of a
zero lattice spacing). This is possible because of the rapid
oscillations of the exponential function in the integrand,
but in this way we neglect all finite cut-off effects that
will give nonuniversal contributions towards the critical
behavior of the two-point correlation function (see [5] for
details). In (2.5) ξ = ξ2 is the second moment correlation
length defined via (see, e.g. [21])

ξ2 = −
[
G̃(0;K|d, σ)

]−1 ∂

∂k2
G̃(k;K|d, σ)

∣∣∣∣
k=0

, (2.6)

where G̃(k;K|d, σ) is the Fourier transform of
G(r;K|d, σ). Because of this identification one can,
in fact, skip for our purposes the analysis of the spherical
field equation (2.4) – one directly has λ = J̃(0)(1+v2ξ

−2).
Since σ > 2 and since we are interested in the behavior

of G(r;K|d, σ) for |r| � 1 (note that then the leading
order contributions of the integral in (2.5) will be coming
from small k values), one can rewrite (2.5) in the form

G(r;K|d, σ) = Gsr(r;K|d) +Glr(r;K|d, σ), (2.7)

i.e. as a sum of “short-range” and “long-range” parts. The
“short-range” correlation function is the part that is only
due to the short-range component of the interaction and,
as usual, will be taken to be of the form

Gsr(r;K|d) =
1
K

1
(2π)d

∫
Rd

eik.rdk
ξ−2 + k2

· (2.8)
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The other contributions that are due to the subleading
components of the interaction do form the correspond-
ing “long-range” part. As it has been already stated in
Section 1 such a structure has been supposed to hold by
Kayser and Ravechè [14] in their qualitative analysis of
the correlation functions in fluids.

Performing the integrations in (2.8) and taking into
account that for 2 < σ < 4 and r� 1

G(r;K|d, σ) = Gsr(r;K|d) +
1
K

1
(2π)d

×
∫
Rd

(bkσ − ck4)eik.rdk
(ξ−2 + k2 − bkσ + ck4)(ξ−2 + k2)

' Gsr(r;K|d) +
b

K

1
(2π)d

×
∫
Rd

kσ eik.rdk
(ξ−2 + k2)2

+ · · · , (2.9)

we obtain

G(r;K|d, σ) =
1
K

1
(2π)d/2

r−(d−2)

×
[
Xsr(r/ξ) + br−(σ−2)X lr(r/ξ) + · · ·

]
, (2.10)

where

Xsr(x) = x(d−2)/2K(d−2)/2(x), (2.11)

X lr(x) =
π

sin[(d+ σ)π/2]

×
{

2d/2+σ−4
1F̃2(2; 2− σ/2, 3− d/2− σ/2;

x2

4
)

−1
4
xd/2+σ−3

[
xId/2(x)− (d+ σ − 2)Id/2−1(x)

]}
,

(2.12)

and · · · stays for contributions which are corrections with
respect to the terms retained. Here Ia(x) is the modified
Bessel function, and pF̃q(a; b; z) is the regularized gener-
alized hypergeometric function

pF̃q(a; b; z) = pFq(a; b; z)
Γ (b1)Γ (b2) · · ·Γ (bq)

, (2.13)

where pFq(a; b; z) is the generalized hypergeometric func-
tion

pFq(a; b; z) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
· (2.14)

The symbol (a)k = a(a+1) · · · (a+k−1) = Γ (a+k)/Γ (a)
in the above equation is the Pochhammer’s symbol. The
function pF̃q is finite for all finite values of its arguments.
In the above expressions only the leading order long-range
contributions (i.e. the contributions “proportional to b”),
have been retained and we have supposed that 2 < d < 4,
2 < σ < 4, and d+ σ < 6.

We recall that for the Ornstein-Zernike type theo-
ries (including the mean-spherical model, see, e.g. [10])
η = 0. In Section 5 we will discuss briefly the generaliza-
tion of (2.10) for models with η 6= 0.

The expressions (2.10–2.12) are the analytical basis
for our further analysis. Let us note that the correlations
within the spherical model have been a subject of detailed
investigations (see [10] and [20] for a comprehensive re-
view) for both short-range and leading long-range inter-
actions. Surprisingly enough, they have never been inves-
tigated for subleading long-range interactions.

3 Large distance behavior of the bulk
two-point correlation function

The asymptotics of the scaling function Xsr for 2 < d < 4
are well known (see, e.g. [23] and references cited therein)

Xsr(x) '
√

π
2x

(d−3)/2 exp(−x)(1 +O(x−1)), x→∞

Γ (d/2−1)
2(4−d)/2 + πxd−2

2d/2 sin(πd/2)Γ (d/2)
+O(x2), x→ 0.

(3.1)

Let us, nevertheless, make some comments here. First,
let us note that the above asymptotic is obtained if one
makes a quadratic approximation of the spectrum and lets
the cut-off Λ of the theory go to infinity. (If one keeps
a sharp finite cut-off Λ with such an approximation of
the spectrum one will obtain a nonexponential oscillatory
power-law behavior [5,22].) Second, on a lattice, for near-
est neighbours interactions between the spins embedded
in a d-dimensional cube it has been shown that the above
expression is valid [5] only for 1 � r � ξ3. If r ≥ ξ3

the correlations do depend (up to the leading order) on
the mutual positions of the spins involved, i.e. the lattice
anisotropy comes into the play and can no longer be ne-
glected [5]. So, one can think that the above expression
is valid in the region 1 � x � ξ2. Third, for x → 0 the
second term in this short-range expansion of the correla-
tion function involves a t dependence of the type tα if one
takes into account that ξ ' ξ+

0 t−ν for t → 0+ and that
(d− 2)ν = α, i.e.

Xsr(r/ξ) ' Γ (d/2− 1)
2(4−d)/2

+
π(r/ξ+

0 )d−2

2d/2 sin(πd/2)Γ (d/2)
tα

+O((r/ξ)2), ξ � r. (3.2)

The temperature dependent term in this expansion is usu-
ally not explicitly specified in the literature on the spher-
ical model. Finally, let us note that according to the
above asymptotics and under the approximations made
ξ2 = ξe = ξ, i.e. the second-moment correlation length
coincides in such a theory with the exponential-decay cor-
relation length. (In [5] it has been shown that for a model
on a hypercubic lattice ξ2 = a/[2 sinh(a/2ξe)], where a is
the lattice spacing and ξe has been chosen to be along one
of the principal axis of the lattice.)
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X lr(x) '

8><
>:

−2σ+d/2−2 σ(d+σ−2)Γ ((d+σ)/2−1)
Γ (1−σ/2)

x−4 +O(x−6), x→∞

2σ+d/2−4 Γ ((d+σ)/2−2)
Γ (2−σ/2)

− xd+σ−4 π(d/2+σ/2+1)

2d/2Γ (d/2) sin(π(d+σ)/2)
+O(x2), x→ 0.

(3.3)

The asymptotics of X lr for 2 < d < 4, 2 < σ < 4,
d+ σ < 6 are (see Appendix A for a derivation)

See equation (3.3) above.

The above asymptotics lead to the following behavior
of the short and long-range parts of the bulk two-point
correlation function

Gsr(r;K|d) ' 1
K

√
π/2

(2π)d/2
ξ−(d−3)/2r−(d−1)/2

× exp(−r/ξ)(1 +O
(
(r/ξ)−1)

)
, r � ξ, (3.4)

and

Glr(r;K|d, σ) ' − b

K

2σ−2

πd/2
σ(d + σ − 2)

× Γ ((d+ σ)/2− 1)
Γ (1− σ/2)

ξ4r−(d+σ), r � ξ. (3.5)

One can determine the crossover region where the cor-
relations from short range become long range type. To
that aim one has to solve the equation

Gsr(r;K|d) ' Glr(r;K|d, σ). (3.6)

Having in mind equations (2.10, 3.4) and (3.5) one obtains
that the crossover takes place at r ' r∗, where

r∗ = (σ − 2)ξ ln ξ +
(
d+ 1

2
+ σ

)
ln ln ξ. (3.7)

The leading-order term of this result coincides with that
one given in [14] (if one takes into account that η = 0 for
the model under consideration).

For d = σ = 3, i.e. for the true van der Waals interac-
tion, the corresponding scaling functions are

Xsr(x) =
√
π

2
exp(−x), (3.8)

and

X lr(x) =

√
2
π

{
1− 3

4
x [exp(−x)Ei(x)− exp(x)Ei(−x)]

+
1
4
x2 [exp(−x)Ei(x) + exp(x)Ei(−x)]

}
· (3.9)

The asymptotics of the short-range scaling function are
obvious, while these for the long-range one are

X lr(x) '

 24
√

2/π x−4
(
1 +O(x−6)

)
, x→∞√

2/π
(
1 + 2x2 lnx

)
+O(x2), x→ 0.

(3.10)

The asymptotics of the correlation function at T = Tc

and for any fixed ξ can be derived to much greater details
in the limit r → ∞ for this especially important case.
They are (see Appendix A)

G(r;K|3, 3) =
b

K

12
π2

ξ4

r6

[
1 + 120(r/ξ)−2

+10080(1− 2
3
c

ξ2
)(r/ξ)−4 +O((r/ξ)−6)

]
, r � ξ,

(3.11)

and

G(r;Kc|3, 3) =
1
Kc

1
4πr

[
1 +

2b
π
r−1

− 4
π
b(b2 − 2c)r−3 +O(r−5)

]
, r →∞. (3.12)

One can easily check that up to the leading-order terms
these asymptotics coincide with the corresponding ones
that follow by using the behavior of the short- and long-
range correlation functions given above. For example,
when r → ∞ but r � ξ (i.e. x = r/ξ → 0 ) from equa-
tions (3.8) and (3.9) one has

G(r;K|3, 3) =
1
K

1
4πr

[
1 + x+

1
2
x2 +

2b
π
r−1

−4b
π
r−1x2 lnx+O(r−3, x3, x2r−1)

]
,

r →∞, x = r/ξ → 0. (3.13)

The crossover from short-range to long-range type be-
havior happens at r = r∗ where r∗, in full agreement with
equation (3.7) for d = σ = 3, is given by

r∗ = ξ

{
ln ξ + 5 ln ln ξ +O

(
ln ln ξ
ln ξ

)}
· (3.14)

Note that equation (3.7) was derived under the condition
that d+σ < 6 and its “analytical continuation” to d = σ =
6 is not obvious. It is nevertheless valid because for r� ξ
the leading-order term in the behavior of G(r;K|3, 3) (see
Eq. (3.11)) can be obtained from that one of G(r;K|d, σ),
given by equation (3.5), if one sets d = σ = 3 there.

4 Finite-size scaling susceptibility

One usually describes the critical behavior of finite
systems in the framework of the finite-size scaling
theory [20,24–27]. The standard finite-size scaling is usu-
ally formulated in terms of only one reference length,
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namely the bulk correlation length ξ. The main statements
of the theory are that

i) The only relevant variable in terms of which the
properties of the finite system depend in the neighbour-
hood of the bulk critical temperature Tc is L/ξ.

ii) The rounding of the phase transition in a given finite
system sets in when L/ξ = O(1).

The tacit assumption is that all other reference lengths
(such as lattice spacings, inverse cut-off, etc.) will lead
only to corrections in the above picture. In addition, by
analogy with the bulk short-range systems it is supposed
that if σ ≥ 2 the finite-size critical behavior will be that
of the corresponding short-ranged finite-size systems (see,
e.g. [28]), characterised by exponentially fast decay of
the finite-size dependence of the thermodynamic quan-
tities at least when the critical region of the system is
leaved in the direction towards higher temperatures (the
low-temperature behavior depends on additional features
like existence, or not, of spin-wave excitations – Goldstone
bosons).

As it has been recently shown the above picture is, in
fact, more complicated [5,17,29] and not completely valid
for systems with subleading long-range interactions [17].
For such systems within the mean-spherical model and
under periodic boundary conditions it has been found that
the finite-size susceptibility χ(t;L) is of the form [17]

χ(t;L) = Lγ/νY (x1, bL
2−σ), (4.1)

or, equivalently,

χ(t;L) = Lγ/ν
[
Y sr(x1) + bL2−σY lr(x1)

]
, (4.2)

where x1 = atL1/ν , and Y , Y sr and Y lr are universal func-
tions. The quantities a, and b are nonuniversal constants.
One quite common way of fixing a is to choose it to be
a = (ξ+

0 )−1/ν . It is worthily to note the close similarity
in the structures of equations (2.10) and (4.2). In other
words – if one knows the structure of the bulk two-point
correlation function one easily can write the correspond-
ing finite-size behavior of the susceptibility. A hypothesis
about such a possibility has been stated for the first time
in [5].

In the high-temperature, disordered phase, where
tL1/ν → ∞, we find that the long-range portion of the
spin-spin interaction gives rise to contributions of the or-
der of bL−(d+σ) that swamp the exponentially small terms
that are expected to characterise the signature of finite
size in systems with periodic boundary conditions and
short range interactions. In other words the subleading
long-range part of the interaction gives rise to a dominant
finite-size dependence in this regime. This is entirely con-
sistent with the inherent long-range correlations that ac-
company long-range interactions, but it violates the stan-
dard finite-size scaling formulation. More explicitly, one
obtains Y sr(x1) ∼ exp(−const. xν1), while

Y lr(x1) ∼ x−dν−2γ
1 , (4.3)

when x1 → ∞. This asymptotic follows from the re-
quirement the finite-size corrections to be of the order of

L−(d+σ) in this regime, which is to be expected on general
grounds and is supported by the existing both exact and
perturbative results for models with leading long-range in-
teraction included [30–32]. Note that (4.3) implies for the
temperature dependence of this correction

χ(t;L)− χ(t;∞) ∼ t−dν−2γL−(d+σ), tL1/ν →∞. (4.4)

Obviously, the existence of such power-law finite-size
dependent dominant terms above Tc is of significance in
the analysis of Monte Carlo data for such systems.

Let us now consider the case d + σ = 6, 2 < d < 4,
2 < σ < 4, which contains the genuine van der Waals
interaction with d = σ = 3. Then, instead of (4.2), one
has [17]

χ(t;L) =

Lγ/ν
{
Y sr(x1) + bL2−σ [Y lr

1 (x1) ln(L) + Y lr
2 (x1)

]}
·

(4.5)

Comparing with the corresponding results for the cor-
relation function one observes, since there is no explicit
ln r dependence there, that this subtle feature like the
logarithmic-in-L corrections will not be captured in the
above mentioned approach – from the structure of the bulk
two-point correlation function with respect to r to obtain
that one of the finite size susceptibility with respect to L
(simply by considering L in the role of r). Nevertheless,
indications that the situation here may be more compli-
cated are found in the short distance expansion of the bulk
correlation function which has logarithmic in r terms.

5 Concluding remarks and discussion

In the present article we derived the analytical behavior
of the two-point correlation function in a system with van
der Waals type interaction. The treatment has been made
within the mean-spherical model, which is an example of
Ornstein and Zernike type theory. We have pointed out
that the leading order behavior of G(r;T |d) as a function
of the distance is exponential only within the region of
separations r between the interacting objects given by the
condition ξ � r � r∗ ≡ (σ − 2)ξ ln ξ. Obviously, tak-
ing into account the dependence of ξ on the temperature,
this region widens essentially only very close to T = Tc.
When r is outside the region defined above the correla-
tions decay in a power law as a function of r: as r−(d−2)

for r � ξ, and as r−(d+σ) for r � (σ − 2)ξ ln ξ. It turns
out that G(r;T |d) can be decomposed in a “short-range”
and “long-range” parts (see Eq. (2.7)). The corresponding
short- and long-range scaling functions Xsr and X lr are
given in equations (2.11) and (2.12), respectively. For the
case 2 < d < 4, 2 < σ < 4 and d+ σ < 6 the behavior of
these functions is illustrated in Figure 1, whereas the small
and large value asymptotics of the functions are given in
equations (3.1) and (3.3). A special attention is paid to the
most important case of d = σ = 3 which mimics the real
van der Waals interaction in fluids. The analytical expres-
sions for the scaling functions are given in equations (3.8)
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Fig. 1. We present as illustration plots of the scaling functions
Xsr(x) and X lr(x) of the short-range and long-range correla-
tion functions, respectively, as a function of the scaling variable
x = r/ξ. Xsr(x) is plotted for d = 2.5, whereas X lr(x) is for
d = 3 and σ = 2.5. For any 2 < d < 4, Xsr is always positive
and decays monotonically as a function of x. For large values
of x, Xsr decays exponentially fast. Note that in contrast with
Xsr(x),X lr(x) is not a monotonic function of x. In addition X lr

can be both positive and negative. X lr(x) decays in a power
law, as x−4, for large values of its argument.

and (3.9). The behavior of X lr is plotted on Figure 2. The
asymptotics of G(r;K|3, 3) and G(r;Kc|3, 3) are given in
equations (3.11) and (3.12). The behavior of the total cor-
relation function G(r;K|3, 3) is illustrated in Figure 3.

Let us note that since all of the above results are for
the mean spherical model they pertain to the case of η =
0 models. Naturally, one stacks with the question: How
expressions like (2.10) and (3.7) should be modified for
models with η 6= 0? A hint in this direction can be found
in [14] – for such models Kayser and Raveché suggest that,
in our terminology, r∗ = (σ − 2 + η)ξ ln ξ. In order to
reconcile this statement with equation (2.10) one has to
suppose that when η 6= 0 (see also Eq. (1.4))

G(r;K|d, σ) = D(T )r−(d−2+η)

×
[
X±,sr(r/ξ) + br−(σ−2+η)X±,lr(r/ξ) + · · ·

]
. (5.1)

Here Xsr is supposed to have the usual properties (see
Eq. (1.5)), whereas for X lr we suppose that X lr(x)→ X lr

−,
x → 0 and X lr(x) → X lr

+x
−2(2−η), x → ∞, where X lr

−
and X lr

+ are positive constants. The large value asymp-
totics of X lr(x) ensures that the correlation function de-
cays as r−(d+σ) for r � r∗, which is in full agreement
with (1.6), and that r∗ = (σ−2+η)ξ ln ξ, which coincides

1 2 3 4 5 6 7
x
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X lr
Scalin f unctio Xlrg n

Fig. 2. The scaling function X lr(x) of the long-range corre-
lation function for d = σ = 3. One observes that, in contrast
with the short-range correlation function, it is not a mono-
tonic function of the scaling variable x = r/ξ. It changes
sign at x ' 1.088 and x ' 6.146 and reaches a minimum
at xmin ' 2.113 which is X lr(xmin) ' −0.192. In other words
the long range part of the interaction increases the correlations
(in comparison with an effective short-range system having the
same value of K; we recall that K is a σ-dependent quantity)
for r up to 1.088 ξ and for r > 6.145 ξ, but decreases them
for 1.088 ξ < r < 6.146 ξ. The maximum of X lr is reached at
x = 0 and it is X lr(0) =

p
2/π ' 0.798. The last implies, as it

is to be expected, that for a fixed r the maximal increment of
the correlations due to the long-range part of the interaction
is reached at T = Tc. X

lr(x) decays in a power law, as x−4, for
large values of its argument.
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Fig. 3. We give here a representative example of the total
two-point correlation function G(r;K|d, σ) as a function of r
for d = σ = 3 and K = b = 1, ξ = 20. As it should be expected
for a ferromagnetic system G > 0 and decays monotonically as
a function of r.

with the result of Kayser and Raveché [14]. The property
G(r;T |d) ' J(r)χ2/β, r →∞ [14] is retained too.

We emphasize, nevertheless, that despite all of the
above features, for the moment (5.1) is only a plausible
hypothesis the verification of which is still lacking.

At the very end we note that, according to a recent
hypothesis [5], the behavior of the bulk two-point corre-
lation function G(r;K|d, σ) can be related to that one of
the finite-size susceptibility under periodic boundary con-
ditions. In the present article (see Sect. 4) we checked
this hypothesis within the mean spherical model using
the results for the finite-size susceptibility derived in [17].
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Definitely, one can extend the calculations presented here
to models with η 6= 0 by using renormalization group tech-
niques.
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Appendix A: Mathematical details

In this section we will provide the mathematical details
needed to derive equations (3.3, 3.10, 3.11) and (3.12).

Let us start with the case d = σ = 3. Then

G(r;K|3, 3) =
1
K

1
2π2

1
r

∫ ∞
0

f(k) sin(kr)dk, (A.1)

where

f(k) :=
k

ξ−2 + k2 − bk3 + ck4
· (A.2)

It is easy to show that if for a given integer n > 0
the derivatives f (p)(0) of the function f do exist for
p = 0, · · · , 4n + 2 and, in addition, f (p)(∞) = 0, p =
0, · · · , 4n+ 2, then∫ ∞

0

f(k) sin(kr)dk = r−1

×
n∑
p=0

[
f (4p)(0)r−4p − f (4p+2)(0)r−4p−2

]
+O(r−4p−5).

(A.3)

Applying this to (A.1) in the limit r � ξ one immediately
obtains (3.11).

In order to derive equation (3.12) let us note that
(ξ−2 = 0 at K = Kc)

G(r;Kc|3, 3) =
1
Kc

1
2π2

1
r

∫ ∞
0

1
1− bk + ck2

sin(kr)
k

dk

=
1
Kc

1
2π2

1
r

[
π

2
+ b

∫ ∞
0

fb(k) sin(kr)dk

−c
∫ ∞

0

fc(k) sin(kr)dk
]
, (A.4)

where

fb(k) :=
1

1− bk + ck2
, (A.5)

and

fc(k) :=
k

1− bk + ck2
, (A.6)

and use has been made of the fact that
∫∞

0
sin(k)/k = π/2.

Applying again (A.3) for the evaluation of the integrals
in equation (A.4), we obtain the result given in equa-
tion (3.12).

The derivation of equation (3.10) is a bit more com-
plicated. First, let us note that

G(r;K|3, 3) =
Kc

K
G(r;Kc|3, 3) +

1
K

1
2π2

1
r

×
∫ ∞

0

[
k2

ξ−2 + k2 − bk3 + ck4

− k2

k2 − bk3 + ck4

]
sin(kr)
k

dk

=
Kc

K
G(r;Kc|3, 3)− 1

K

1
2π2

ξ−2

r

×
∫ ∞

0

1
(1− bk + ck2)(ξ−2 + k2 − bk3 + ck4)

sin(kr)
k

dk

' Kc

K
G(r;Kc|3, 3)− 1

K

1
2π2

ξ−2

r

×
[∫ ∞

0

1
(1− bk + ck2)(ξ−2 + k2)

sin(kr)
k

dk

+ b

∫ ∞
0

k3

(ξ−2 + k2)2

sin(kr)
k

dk
]

' Kc

K
G(r;Kc|3, 3)− 1

K

1
2π2

ξ−2

r

×
[∫ ∞

0

1
ξ−2 + k2

sin(kr)
k

dk + b

×
∫ ∞

0

1
ξ−2 + k2

sin(kr)dk

+ b

∫ ∞
0

k2

(ξ−2 + k2)2

sin(kr)
k

dk
]

=
Kc

K
G(r;Kc|3, 3)− 1

K

1
2π2

ξ−2

r

×
[∫ ∞

0

1
ξ−2 + k2

sin(kr)
k

dk

+b(2 + ξ−2 ∂

∂ξ−2
)

×
∫ ∞

0

1
ξ−2 + k2

sin(kr)dk
]
. (A.7)

Above we have already dealt with the large distance
asymptotic of G(r;Kc|3, 3). In order to obtain (3.10) now
it only remains to note that [34]

ξ−2

∫ ∞
0

1
ξ−2 + k2

sin(kr)
k

dk =
π

2

[
1− exp

(
−r
ξ

)]
,

(A.8)

and∫ ∞
0

sin(k)
x2 + k2

dk =
1

2x
[exp(−x)Ei(x) − exp(x)Ei(−x)] ,

Re(x) > 0. (A.9)
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At the end, let us derive the results given in equa-
tion (3.3). The case 1 � r � ξ, i.e. x → 0, is simple
– using the series representations of the modified Bessel
functions Ia(x) (see, e.g. [33] or [34]) one obtains from
equations (2.12–2.14) the asymptotics of X lr(x) for small
values of the argument, given in equation (3.3). Much
more interesting is the case when r � ξ � 1, i.e. when
x � 1. We will present here a derivation of the corre-
sponding asymptotic of X lr(x) without making use of the
large value asymptotic results for the function 1F2. One
can get an impression of the beauty of the proposed way
of acting only after taking a look at the results available
for the function 1F2 (see, e.g., [35]). We start by noting
that

X lr(x) =
∫ ∞

0

dt
tσ+d/2

(x+ t2)2
Jd/2−1(t)

= (1 + x
∂

∂x
)
∫ ∞

0

dt
tσ+d/2

x+ t2
Jd/2−1(t)

= (1 + x
∂

∂x
)
∫ ∞

0

dz exp(−zx)

×
∫ ∞

0

dt exp(−zt2)tσ+d/2−2Jd/2−1(t). (A.10)

In order to evaluate the last integral in (A.10) one can use
the formula [34]∫ ∞

0

dx xµ exp(−αx2)Jν(βx) =

βνΓ (ν/2 + µ/2 + 1/2)
2ν+1α(µ+ν+1)/2Γ (ν + 1) 1F1

(
ν + µ+ 1

2
; ν + 1;−β

2

4α

)
·

(A.11)

With its help one obtains∫ ∞
0

dt exp(−zt2)tσ+d/2−2Jd/2−1(t) =

Γ
(
d+σ

2 − 1
)

2d/2Γ
(
d
2

) z1−(d+σ)/2
1F1

(
d+ σ

2
− 1;

d

2
;− 1

4z

)
,

(A.12)

i.e.

X lr(x) =
Γ
(
d+σ

2 − 1
)

2d/2Γ
(
d
2

) (
1 + x

∂

∂x

)
×
∫ ∞

0

dz exp(−zx)z1−(d+σ)/2
1F1

(
d+ σ

2
− 1;

d

2
;− 1

4z

)
·

(A.13)

Note now that when x � 1 the main contribution of the
integral in the above expression will stem from small z
values. Using the corresponding asymptotic [33]

1F1(a; b;−y) =
Γ (b)

Γ (b− a)
y−a

(
1 + a(a− b+ 1)y−1

+O(y−2)
)

(A.14)

of 1F1(a; b,−y) for y � 1 and performing the integra-
tions, we arrive at the asymptotic of X lr(x) reported in
equation (3.3) for the case x� 1.
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